dplyr Example 2 - Sessionize Web
Events

Jim Porzak
2016-02-17

When attempting to understand customers from their observed behavior, recorded as events, it is typically
useful to sessionize the event stream to correspond to a single customer engagement. Also these
individual sessions can be aggregated to give a high level characterization of each customer.

| have been talking about these issues for a few years. See my achives here and here. Most recently, |
presented Structuring Data for Self-serve Customer Insights at ODSC West in November 2015.

For this example, we use the infamous 3.5 million row AOL search data set which was used in a recent
Stanford class. See also the AOL Readme.

The goal of this exercise is to roll-up the individual search events to

1. aol_sessions: one record for each series of contiguous searches summarizing the search activity in
the sesison. The record is identified by the AnonID and a Session Sequence Number [1, 2, 3, &4€]].
2. aol_visitors: one record for each visitor summarizing the visitors over-all search activity.

Load the raw AOL search data

library(readr)

library(dplyr)

library(ggplot2)

library(knitr)

library(dplyrkExamples)

fn <- "http://sing.stanford.edu/cs303-spl@/assignments/user-ct-test-collection-01.zip"
download.file(fn, "aolzip")

aol.tsv <- unzip("aolzip")

t0 <- Sys.time()

fn <- system.file("extdata", "user-ct-test-collection-01.zip", package = "dplyrExamples")
aol <- read_tsv(aol.tsv)

(Elapsed <- Sys.time() - t@)

Time difference of 8.96502 secs

glimpse(aol)

Observations: 3,558,411

Variables: 5

$ AnonID (int) 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 14...
$ Query (chr) "rentdirect.com", "www.prescriptionfortime.com", "st...

http://ds4ci.files.wordpress.com/2013/05/large-data-methods-bdbf-sf-2012.pdf
http://ds4ci.files.wordpress.com/2013/05/sessionization-methods-bdx-berkeley-2013.pdf
http://bit.ly/1X3MQOJ
http://sing.stanford.edu/cs303-sp10/assignments/assignment2.html
http://sing.stanford.edu/cs303-sp10/assignments/U500k_README.txt

$ QueryTime (time) 2006-03-01 ©7:17:12, 2006-03-12 12:31:06, 2006-03-1...
$ ItemRank (int) NA, NA, NA, NA, NA, NA, 1, NA, NA, NA, NA, NA, NA, N...
$ ClickURL (chr) NA, NA, NA, NA, NA, NA, "http://www.westchestergov.c...

Data set description from the AOL readme.

The data set includes {AnonID, Query, QueryTime, ItemRank, ClickURL}.

o AnonlID - an anonymous user ID number.

o Query - the query issued by the user, case shifted with most punctuation removed.

o QueryTime - the time at which the query was submitted for search.

o ItemRank - if the user clicked on a search result, the rank of the item on which they clicked is listed.

o ClickURL - if the user clicked on a search result, the domain portion of the URL in the clicked result
is listed.

Each line in the data represents one of two types of events:

1. A query that was NOT followed by the user clicking on a result item.
2. A click through on an item in the result list returned from a query.

In the first case (query only) there is data in only the first three columns/fields 4€“ namely AnonID, Query,
and QueryTime (see above).

In the second case (click through), there is data in all five columns. For click through events, the query that
preceded the click through is included. Note that if a user clicked on more than one result in the list
returned from a single query, there will be TWO lines in the data to represent the two events. Also note
that if the user requested the next &€ocepagea€ or results for some query, this appears as a subsequent
identical query with a later time stamp.

Sessionize into visitor sessions

The big idea is to model a visitora€™s search session. IOW, a visitor comes to the site and does one or
more searches (with posible click-throughs) and then leaves the site. The goal is to summarize that activity
in one record. Industry convention is a session ends if there is more that a 30 minute gap to the next event
for a visitor. We will use that convention here.

For the purpose of this example, we are going to ignore data issues around multiple clicks per search and
next page records.

This is the dplyr sequence you would use in production. The next section breaks down the process step-
by-step.

t0 <- Sys.time()
aol sessions <- aol %>%
arrange(AnonID, QueryTime) %>%
group_by(AnonID) %>%
mutate(Minutes_After_Last = difftime(QueryTime, lag(QueryTime), units = "mins"),
New_Session_Flag = is.na(lag(AnonID)) | Minutes_After_ Last > 30,
Session_Seq_Num = cumsum(New_Session_Flag)
) %>%
group_by(AnonID, Session_Seq_Num) %>%
summarize(Session_Start_At = first(QueryTime),
Number_Searches = n(),

Number_Terms = n_distinct(Query),
Session_Duration_Minutes = as.numeric(difftime(last(QueryTime), first(QueryTime),

units = "mins")),

Number_Clicks = sum(!is.na(ClickURL))

)
(Elapsed <- Sys.time() - t@)
Time difference of 3.557838 mins
glimpse(aol_sessions)
Observations: 1,069,200
Variables: 7
$ AnonID (int) 142, 142, 142, 142, 142, 142, 142, 14...
$ Session_Seq_Num (int) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...
$ Session_Start_At (time) 2006-03-01 07:17:12, 2006-03-12 12:3...
$ Number_Searches (int) 21, 1, 2, 2, 1, 1, 2, 1, 2, 2, 4, 2, 1...
$ Number_Terms (int) 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1...
$ Session Duration_Minutes (dbl) 0.0000000, ©.0000000, 0.2666667, 0.18...
$ Number Clicks (int) @, @, ©, 0, 1, 0, ©, 0, 0, 1, 1, 0, O...

Step-by-step dplyr

Breaking down the above block of dplyr codea€]

Ensure sorted by visitor ID and then query timestamp. Set up group_by() for following
mutate().

It turns out the raw data file is already in this sort order, so the only visible change is the setting of the
group AnonlD.

glimpse(aol)

Observations: 3,558,411

Variables: 5

$ AnonID (int) 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 14...
$ Query (chr) "rentdirect.com", "www.prescriptionfortime.com", "st...
$ QueryTime (time) 2006-03-01 ©7:17:12, 2006-03-12 12:31:06, 2006-03-1...
$ ItemRank (int) NA, NA, NA, NA, NA, NA, 1, NA, NA, NA, NA, NA, NA, N...
$ ClickURL (chr) NA, NA, NA, NA, NA, NA, "http://www.westchestergov.c...

groups(aol)

NULL

aols <- aol %>%
arrange(AnonID, QueryTime) %>%
group_by(AnonID)

glimpse(aols)

Observations: 3,558,411

Variables: 5

$ AnonID (int) 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 14...
¢ Query (chr) "rentdirect.com", "www.prescriptionfortime.com", "st...
$ QueryTime (time) 2006-03-01 ©7:17:12, 2006-03-12 12:31:06, 2006-03-1...
¢ ItemRank (int) NA, NA, NA, NA, NA, NA, 1, NA, NA, NA, NA, NA, NA, N...
$ ClickURL (chr) NA, NA, NA, NA, NA, NA, "http://www.westchestergov.c...

groups(aols)

[[1]]
AnonID

Append the session sequence number to each record

The session sequence number starts at 1 for each visitor and is incremented whenever the time interval
from the last record is greater than 30 minutes. Figuring this out is done in three steps:

1. Compute the time lag, in minutes, from the prior record
2. Set a new session flag TRUE when
o there is no prior record for the visitor (IOW, a new visitor ID), or
o the lag to the prior record is greater than 30 minutes
3. Do a cumulative sum of the session flags to get the session sequence number

aols <- aols %>%
mutate(Minutes_After_Last = difftime(QueryTime, lag(QueryTime), units = "mins"),
New_Session_Flag = is.na(lag(AnonID)) | Minutes_After_Last > 30,
Session_Seq_Num = cumsum(New_Session_Flag)

)
glimpse(aols)

Observations: 3,558,411
Variables: 8

$ AnonID (int) 142, 142, 142, 142, 142, 142, 142, 142, 142...
$ Query (chr) "rentdirect.com", "www.prescriptionfortime....
$ QueryTime (time) 2006-03-01 07:17:12, 2006-03-12 12:31:06,
$ ItemRank (int) NA, NA, NA, NA, NA, NA, 1, NA, NA, NA, NA,
$ ClickURL (chr) NA, NA, NA, NA, NA, NA, "http://www.westche...
$ Minutes_After_Last (dfft) NA mins, 1.615390e+04 mins, 7.728383e+03 m...
$ New_Session Flag (lgl) TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE,...
$ Session_Seq_Num (int) 1, 2, 3, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10,

kable(aols[14:30, -c(2, 4, 5)], caption = "Look at some interesting rows:")

Look at some interesting rows:

AnonID QueryTime Minutes_After_Last New_Session_Flag Session_Seq_Num

142 2006-04-08 01:31:04 6.005733e+03 mins TRUE 10
142 2006-04-08 01:31:14 1.666667e-01 mins FALSE 10
142 2006-04-08 08:38:23 4.271500e+02 mins TRUE 11
142 2006-04-08 08:38:31 1.333333e-01 mins FALSE 11
142 2006-04-08 08:38:42 1.833333e-01 mins FALSE 11
142 2006-04-08 08:39:30 8.000000e-01 mins FALSE 11
142 2006-04-09 02:19:24 1.059900e+03 mins TRUE 12
142 2006-04-09 02:20:44 1.333333e+00 mins FALSE 12
142 2006-04-13 00:25:27 5.644717e+03 mins TRUE 13
142 2006-04-22 23:51:18 1.436585e+04 mins TRUE 14
142 2006-05-06 08:49:34 1.925827e+04 mins TRUE 15
142 2006-05-12 22:43:36 9.474033e+03 mins TRUE 16
142 2006-05-18 09:21:57 7.838350e+03 mins TRUE 17
142 2006-05-19 19:36:31 2.054567e+03 mins TRUE 18
217 2006-03-01 11:58:51 NA TRUE 1
217 2006-03-01 11:58:51 0.000000e+00 mins FALSE 1
217 2006-03-01 14:06:23 1.275333e+02 mins TRUE 2
Summarize by session sequence number within visitor
This final step is straightforward.
aols <- aols %>%
group_by(AnonID, Session_Seq_Num) %>%
summarize(Session_Start_At = first(QueryTime),

Number_Searches = n(),

Number_Terms = n_distinct(Query),

Session_Duration_Minutes = difftime(last(QueryTime), first(QueryTime), units = "mins"),

Number_Clicks = sum(!is.na(ClickURL))

)
glimpse(aols)

##
#H#
H##
##
##
#H#
##
##
##

Observations: 1,069,200

Variables: 7

$ AnonID (int) 142, 142, 142, 142, 142, 142, 142, 14...
$ Session_Seq Num (int) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...
$ Session_Start_At (time) 2006-03-01 ©7:17:12, 2006-03-12 12:3...
$ Number_Searches (int) 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 4, 2, 1...
$ Number_Terms (int) 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1...
$ Session_Duration_Minutes (dfft) ©.0000000 mins, 0.0000000 mins, ©.26...
$ Number_Clicks (int) @, 8, 0, ©, 1, 0, @, 0, 0, 1, 1, 0, O...

EDA of AOL Sessions

g8

gg

plot(aol_sessions, aes(Session_Duration_Minutes)) +
geom_histogram(binwidth = 10) +
ggtitle("AOL Sessions - Distribution of Sessions Durations") +

scale_y logle()

AOQOL Sessions - Distribution of Sessions Durations

Session_Duration_Minutes

plot(aol_sessions, aes(Number_Clicks)) +
geom_histogram(binwidth = 1) +

ggtitle("AOL Sessions - Distribution of # Clicks in Session") +
scale_y loglo() +

x1im(1, 50)

400

AOL Sessions - Distribution of # Clicks in Session

1e+05-

Te+03-

count

1e+01-

0 10 20 30 40 50
Number_ Clicks

ggplot(aol_sessions, aes(as.Date(Session_Start_At))) +
geom_histogram(binwidth = 1) +
ggtitle("AOL Sessions - Distribution of Session Start Dates")

AOL Sessions - Distribution of Session Start Dates
15000-

10000-

count

5000-

|:| -
Mar 01 Mar 15 Apr 01 Apr15 May 01 May 15 Jun 01
as.Date(Session_Start_At)

Summarizing to Visitor Level

This is trivial and fast. We just group_by the visitor unique identifier and then use summarize() to create the
visitor metrics we are interested in.

t0 <- Sys.time()
aol_visitors <- aol_sessions %>%
group_by(AnonID) %>%
summarize(Number_Sessions = n(),
First_Session_At = min(Session_Start_At),
Last_Session_At = max(Session_Start_At),
Total Duration_Minutes = as.numeric(sum(Session_Duration_Minutes)),

Avg Duration_Minutes = as.numeric(mean(Session_Duration_Minutes)),

Median_Duration_Minutes = as.numeric(median(Session_Duration_Minutes)),

Avg_Num_Searches = mean(Number_Searches),
Median_Num_Searches = median(Number_Searches),
Avg _Num_Clicks = mean(Number_Clicks),
Median_Num_Clicks = median(Number_Clicks)

)
(Elapsed <- Sys.time() - t@)

Time difference of 27.48149 secs

glimpse(aol_visitors)

Observations: 65,516
Variables: 11

$ AnonID (int) 142, 217, 993, 1268, 1326, 1337, 1410,...
$ Number_Sessions (int) 18, 22, 3, 18, 25, 14, 9, 17, 50, 29,

$ First_Session At (time) 2006-03-01 07:17:12, 2006-03-01 11:58...
$ Last_Session_At (time) 2006-05-19 19:36:31, 2006-05-23 15:41...
$ Total Duration_Minutes (dbl) 1.628333e+01, 1.988333e+01, 8.333333e-...
$ Avg Duration_Minutes (dbl) ©.90462963, ©.90378788, 0.02777778, O....
$ Median_Duration_Minutes (dbl) 0.0000000, ©.0000000, ©.0000000, 0.000...
$ Avg _Num_Searches (dbl) 1.500000, 1.318182, 1.333333, 1.333333...
$ Median_Num_Searches (dbl) 21, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 4,...
$ Avg Num_Clicks (dbl) ©.1666667, ©.4545455, ©.3333333, 0.222...
$ Median_Num_Clicks (dbl) @.0, 0.0, 0.0, 0.0, 0.0, 1.5, 0.0, 1.0...

EDA of AOL Visitors

Basic metrics for the AOL Search data set:

o Number of visitors: 65516

o Number of sessions: 1069200

o Number of records: 3558411

o First search at: 2006-03-01 00:01:53
o Last search at: 2006-05-31 23:59:58

Distributions of visitor properties:

ggplot(aol _visitors, aes(Number_Sessions)) +
geom_histogram(binwidth = 1) +
ggtitle("AOL Visitors - Distribution of Number of Sesisons") +
scale_y loglo() +
x1im(1, 200)

AOL Visitors - Distribution of Number of Sesisons

1000-

count

10-

0 50 100 150 200
Number_Sessions

ggplot(aol_visitors, aes(Avg Duration_Minutes)) +
geom_histogram(binwidth = 1) +
ggtitle("AOL Visitors - Distribution of Average Session Duration") +
scale_y logle() +
xlim(0, 60)

AOQOL Visitors - Distribution of Average Session Duration

1000-

count

10-

20 40 B0
Avg_ Duration_Minutes

ggplot(aol_visitors, aes(Avg Num_Clicks)) +
geom_histogram(binwidth = 1) +
ggtitle("AOL Visitors - Distribution of Average Number of Click Throughs") +
scale_y logloe() +
x1lim(@, 20)

AOL Visitors - Distribution of Average Number of Click Throughs

1000-

count

10-

0 5 ‘1IIII 15 20
Avg Num_Clicks

Learning More

The place to start, of course, is Hadleya€™s vignettes in the dplyr package. Especially Introduction to
dplyr and Window functions and grouped mutateffilter.

Now that Hadley is with RStudio, search their blog for dplyr; get the Data Wrangling Cheat Sheet; watch
Data Wrangling with R & RStudio. To understand Hadleya€™s current thinking about data analysis watch
Pipelines for Data Analysis in R and The Grammar and Graphics of Data Science - the latter with Winston
Chang.

Lastly, see Garrett & Hadleya€™s chapter on data transform in their upcoming R for Data Science

To compare the dplyr windowing method with how it works in SQL see this simple example or Google &€°a
€cepartition bya€ sqla€™, perhaps replacing 8€ sqla€™ with your favorite DBMS; e.g. &€ postgresqla€™,
4€ redshifta€™, etc.

Conclusion

This example did a full refresh of the aol_session and aol_visitor. In a production environment where new
data come in, say, nightly we would only sessionize the new records and append them to existing records,
if any, for the visitors in the nightly set.

(The brute force method is to let sessions end at the end of each batch load. Generally this is acceptable.
You can check this on the fully processed sessions by seeing how many actually span the cut off time, eg
midnight.)

Then update just those visitor level summaries for visitor IDs which were in the incremental batch.
| hope this dplyr example inspired you to add the library to your regular took set.

Please send comments and suggestions to Jim at DS4Cl.org or leave an issue or pull request at my
qithub.
Thanks! Jim

Remember to clean house!

https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
https://cran.rstudio.com/web/packages/dplyr/vignettes/window-functions.html
http://blog.rstudio.org/?s=dplyr
http://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://www.rstudio.com/resources/webinars/data-wrangling-with-r-and-rstudio/
https://www.rstudio.com/resources/webinars/pipelines-for-data-analysis-in-r/
https://www.rstudio.com/resources/webinars/the-grammar-and-graphics-of-data-science/
http://r4ds.had.co.nz/transform.html
http://r4ds.had.co.nz/
http://www.sqlservercentral.com/articles/windows+functions/135666/
https://github.com/ds4ci/dplyrExamples

file.remove("user-ct-test-collection-01.txt")

[1] TRUE

file.remove("aolzip")

[1] TRUE

