

Data Wrangling in the Tidyverse

21st Century R

DS Portugal Meetup, at Farfetch, Porto, Portugal
April 19, 2017

Jim Porzak
Data Science for Customer Insights

Outline

1. A very quick introduction to R
2. The tidyverse
3. A real world example
4. Wrap up, questions, & learning more

Appendix has links to learn more.

Brief history of R

- First there was S by John Chambers, et al
 - 1976: first internal production use at Bell Labs
 - 1980: first distribution outside of Bell Labs
- Then R by Ross Ihaka & Robert Gentleman at University of Auckland
 - 1995: the initial release,
 - 2000: the V1.0 “production” release
- RStudio & Hadley Wickham
 - 2011: the initial V0.92 release of RStudio IDE
 - 2017: [R for Data Science](#) published

Growth of R

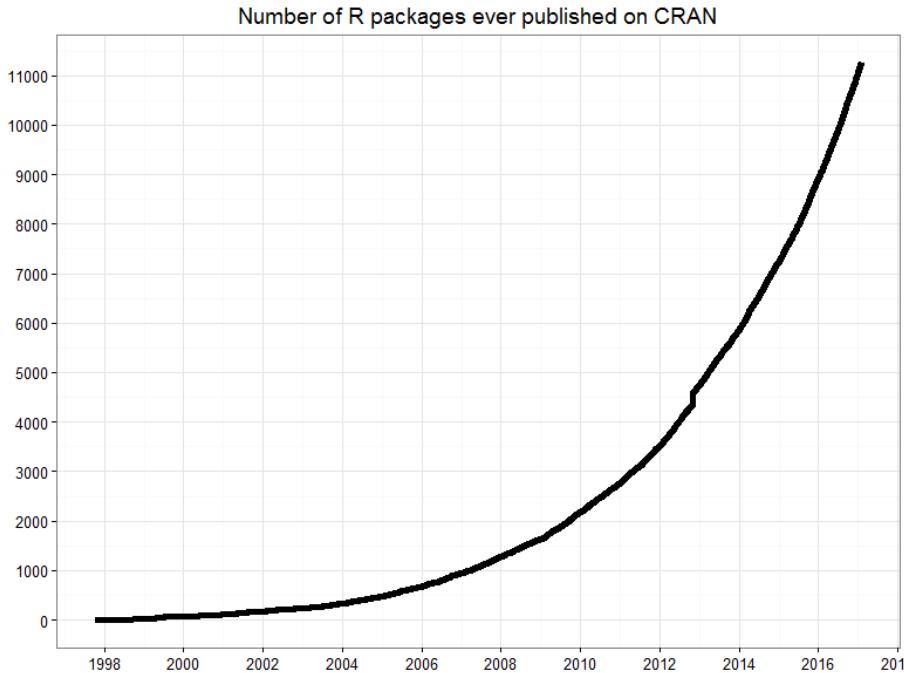
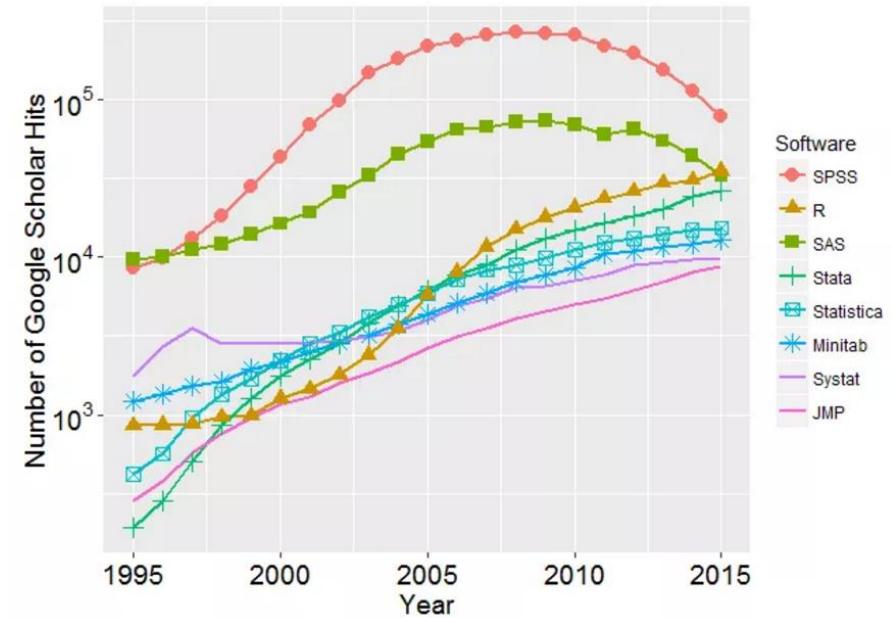


Figure 2f. A logarithmic view of the number of scholarly articles found in each year by Google Scholar. This combines the previous two figures into one by compressing the y-axis with a base 10 logarithm.

Big Ideas of R

- “R is a free software environment for statistical computing and graphics” (www.r-project.org)
- Base language is functional, object orientated (sort of), does vector arithmetic, missing data handled with NA's
- Methods produce a result object (not printed output). Generic functions, like `print()`, specific to object type.
- R ecosystem from the beginning to support rich development.
- 10456 packages on CRAN (17Apr17)

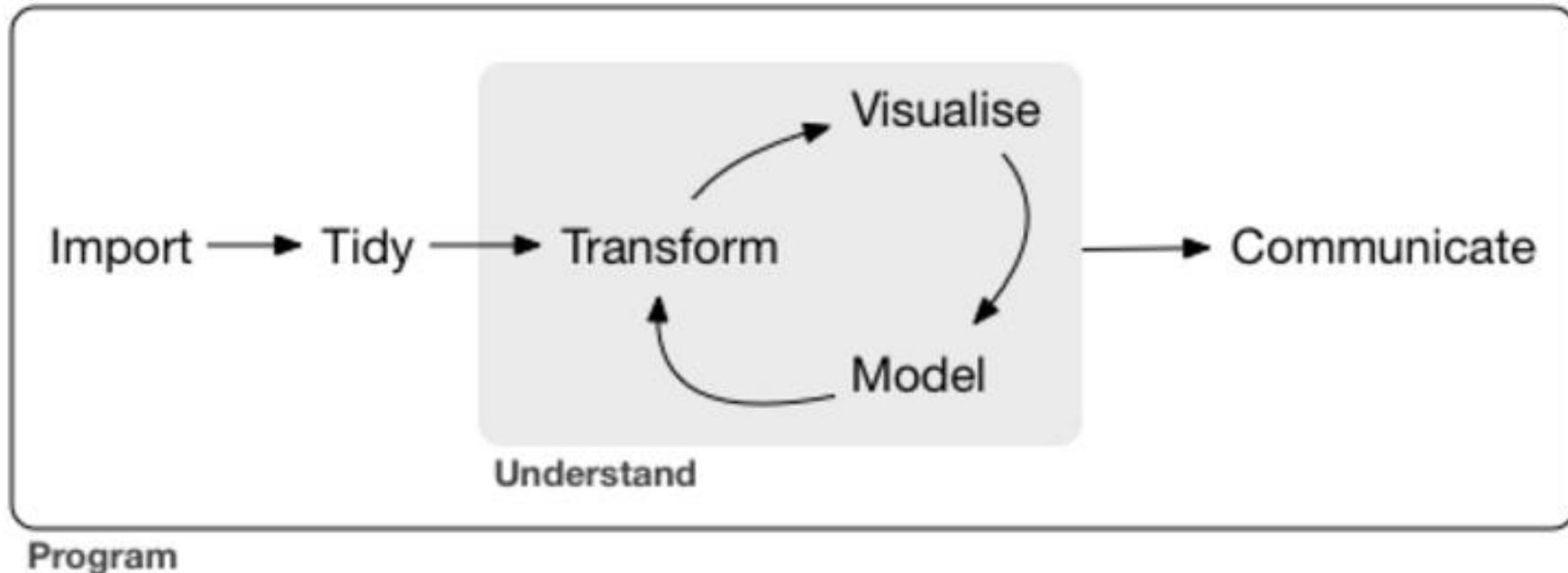
The dataframe in R

- Columns of same data type:
 - Character, integer, real, logical, Date, POSIX (timestamp with optional time zone)
 - But mix data types in dataframe
- Rows across columns
- Same idea as a SQL table, Excel sheet (with typed columns), CSV or tab delimited text files, etc.
- RAM resident (but with good workarounds for big data)

The tidyverse - Outline

- Hadley's data science workflow
- Packages in the tidyverse
 - Packages that are friends of the tidyverse
- dplyr package – the data wrangling workhorse
- Tidy & untidy data
- tidyr package – getting tidy
- Quick look at other packages & functions

Hadley's Data Science Workflow



This and most figures in this section are from *R for Data Science* by Garrett Grolemund and Hadley Wickham at r4ds.had.co.nz

install.packages("tidyverse")

core:

- **ggplot2**, for data visualisation.
- **dplyr**, for data manipulation.
- **tidyR**, for data tidying.
- **readr**, for data import.
- **purrr**, for functional programming.
- **tibble**, for tibbles, a modern re-imagining of data frames.

friends for data manipulation:

- **hms**, for times.
- **stringr**, for strings.
- **lubridate**, for date/times.
- **forcats**, for factors.

friends for data import:

- **DBI**, for databases.
- **haven**, for SPSS, SAS and Stata files.
- **httr**, for web apis.
- **jsonlite** for JSON.
- **readxl**, for .xls and .xlsx files.
- **rvest**, for web scraping.
- **xml2**, for XML.

friends for modeling:

- **modelr**, for simple modelling within a pipeline
- **broom**, for turning models into tidy data

Loading tidyverse Packages

```
library(tidyverse)
```

- loads the core packages

The friends must be loaded independently, eg

- `library(stringr)`
- `library(lubridate)`
- Etc.

dplyr Data Wrangling Verbs

- `filter()` – rows by their values
- `arrange()` – reorder rows
- `select()` – pick and/or exclude columns
- `mutate()` – create new columns
- `summarize()` – collapse rows with summaries

And any of above may be scoped over a group of rows with:

- `group_by()` – define groups based on categorical variables

When working with data in RDMS' (eg Redshift):

- `collect()` – build SQL for the prior verbs, send to RDBMS, and pull down result set while maintaining data types.

Using dplyr Functions

Arguments:

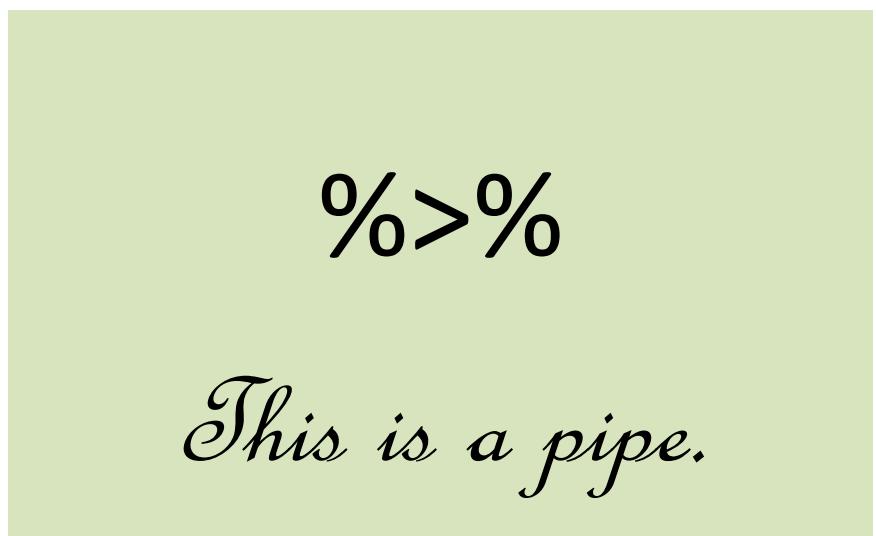
- 1st is the data frame to work on
- Following arguments define what to do on which named columns in the data frame

Result is always another data frame:

```
# starting with myDF0 - observations across the world
myDF1 <- filter(myDF0, country == "US")
myDF <- summarize(myDF1, Count = n())

# or, without intermediate dataframes
myDF <- summarize(
  filter(myDF0, country == "US"),
  Count = n())
```

Pipes to the Rescue!



Takes the result of the LHS and pushes into the first argument of the RHS:

```
# or, with pipes
myDF <- myDF0 %>%
  filter(country == "US") %>%
  summarize(Count = n())
```

dplyr Example (1 of 2)

Business question 2: by monthly cohort how many and what percentage of paying subscribers are currently subscribed?

Words

Group the subsubscriber_summary rows having positive RTD by monthly cohort. Calculate:

1. Number of subscriber starts as the number of rows,
2. Number still subscribed as the number with `is_subscribed` being TRUE, and
3. Percentage that are still subscribed from 1) and 2).

Arrange in monthly cohort order.

SQL

```
SELECT ss.cohort_yymm,
        COUNT(*) AS Number_Starts,
        SUM(ss.is_subscribed::INT) AS Number_Subscribed,
        (100.0 * SUM(ss.is_subscribed::INT) /
        COUNT(*))::NUMERIC(10, 1) AS Per cent_Subscribed
    FROM subscriber_summary AS
    WHERE ss.revenue_to_date > 0
    GROUP BY 1
    ORDER BY 1;
```

Figure 4: Solution to business question 2

From Jim's recent paper [A Data Structure for Customer Insights](#) in Applied Marketing Analytics

dplyr Example (2 of 2)

```
library(tidyverse)

bq2 <- subscriber_summary %>%
  filter(revenue_to_date > 0) %>%
  group_by(cohort_yymm) %>%
  summarize(Number_Starts = n(),
           Number_Subscribed = sum(is_subscribed),
           Percent_Subscribed = 100 * Number_Subscribed / Number_Starts) %>%
  arrange(cohort_yymm)
```

Observations:

- Fewer lines than SQL (by 1)
- A more natural sequence: start with data source, end with order
- Reference prior calculations by name!

Hadley's 3 Rules for Being Tidy

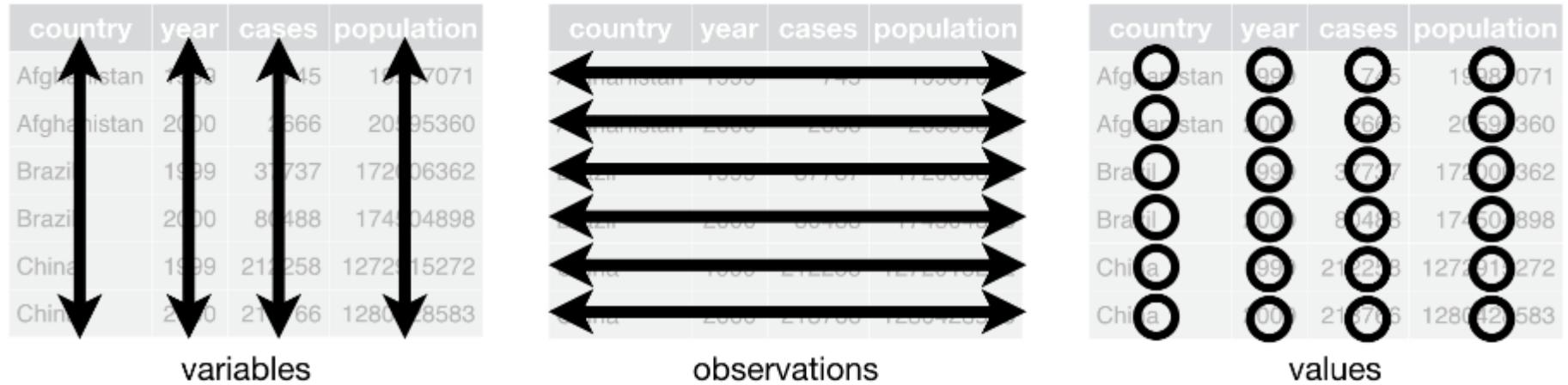


Figure 12.1: Following three rules makes a dataset tidy: variables are in columns, observations are in rows, and values are in cells.

Note that any two conditions imply the third.
If values are not in cells, where are they?

Tidy Case Study

**The widest,
un-tidyist,
worst data file,
ever!**

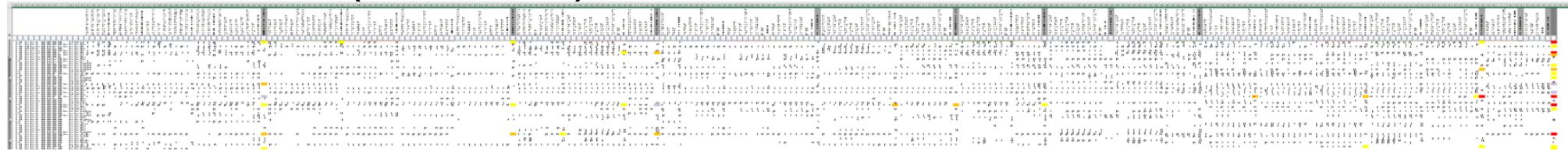
**Which came in as
an _____ file,
of course.**

Tidy Case Study

A process flow survey broken down into Stages, Process Groups, and individual Tasks coded as <stage>. <process group>. <task>

For each we have # cycles to pass QC and time per cycle.

The first ~50 rows (out of 3400) & 775 columns:



The first few data columns:

1.1.1 Time	1.1.1 Cycle	1.1.1 Total	1.1.2 Time	1.1.2 Cycle	1.1.2 Total	1.1.3 Time	1.1.3 Cycle	1.1.3 Total	1.1.4 Time	1.1.4 Cycle	1.1.4 Total	1.1 One Cycle Total	1.1 Total	1.2.1 Time	1.2.1 Cycle	1.2 Total
10	100	1000	10	100	1000	10	100	1000	10	100	1000	40	4000	10	100	1
15	1	15	15	1	15	15	1	15	15	1	15	60	60	10	10	1

The last few data columns:

11.1.1 Time	11.1.1 Cycle	11.1.1 Total	11.1.2 Time	11.1.2 Cycle	11.1.2 Total	11.1.3 Time	11.1.3 Cycle	11.1.3 Total	11.1 One Cycle Total	11.1 Total	11 One Cycle Total	11 Total	One Cycle Total Time in minutes	Total Time in minutes
10	10	100	10	2	20	10	20	200	30	320	30	320	1530	14650
30	3	90	20	3	60	30	1	30	80	180	80	180	605	1660
5	1	5	5	1	5	5	1	5	15	15	15	15	1450	1455

Load & Basic Cleanup

Read sheet; Drop Columns, Fix Column Names; Split into Details & Measures

```
22 ## Read Sheet & Basic Cleanup
23
24 ```{r ReadSheet}
25 InputFile <- "../DataIn/Transformed - MTC_DataExport_201607181050 - 0822-1.xlsx"
26 mtc_tc0 <- read_excel(InputFile)
27 # Drop PII data & all "Total" columns
28 mtc_tc <- mtc_tc0 %>%
29   select(-(2:6), -contains("Total"))
30 # Give the unique identifier column a name
31 colnames(mtc_tc)[1] <- "ID"
32 # split off respondents' properties (replacing spaces in column names with underscores)
33 mtc_tc_details <- mtc_tc %>%
34   select(1:14)
35 colnames(mtc_tc_details) <- str_replace_all(colnames(mtc_tc_details), fixed(" "), "_")
36 # from their responses (left padding single digit stage in column names with zero)
37 mtc_tc_measures <- mtc_tc %>%
38   select(-(2:14)) %>%
39   mutate_at(vars(-ID), as.integer)
40 colnames(mtc_tc_measures) <- ifelse(str_detect(colnames(mtc_tc_measures), "[1-9]\\."),
41                                         paste0("0", colnames(mtc_tc_measures)),
42                                         colnames(mtc_tc_measures))
43 ```

|
```

Screen shot from the R Notebook showing the “ReadSheet” code chunk.

Gather our Columns to be Tidy

In this example, from [R4DS](#), the observations for the years are in individual columns. We want a column for the year and a second column for the number of cases. “year” and “cases” are the key/value pair.

country	year	cases	country	1999	2000
Afghanistan	1999	745	Afghanistan	745	2666
Afghanistan	2000	2666	Brazil	37737	80488
Brazil	1999	37737	China	212258	213766
Brazil	2000	80488			
China	1999	212258			
China	2000	213766			

table4

Figure 12.2: Gathering `table4` into a tidy form.

In the final result, the gathered columns are dropped, and we get new `key` and `value` columns.

Tidying up (1 of 4)

Prior step left us with:

```
> mtc_tc_measures
# A tibble: 3,411 x 449
  ID `01.1.1 Time` `01.1.1 cycle` `01.1.2 Time` `01.1.2 cycle` ...
  <dbl> <int> <int> <int> <int>
1 2     10    1     30    2
2 4     NA    NA    NA    NA
3 5     10    1     NA    NA
4 6     NA    NA    60    2
5 7     NA    NA    NA    NA
6 8     NA    NA    NA    NA
7 10    NA    NA    NA    NA
8 12    NA    NA    NA    NA
9 13    NA    NA    NA    NA
10 14    60    1     NA    NA
# ... with 3,401 more rows, and 444 more variables: `01.1.3 Time` <int>,
# `01.1.3 cycle` <int>, `01.1.4 Time` <int>, `01.1.4 cycle` <int>, `01.2.1
# Time` <int>, `01.2.1 cycle` <int>, `01.2.2 Time` <int>, `01.2.2
```

Column name becomes key: "TaskMetric"

Data becomes value: "Value"

Now: 1) gather data columns into key/value pairs called TaskMetric & Value; 2) separate TaskMetric into keys Task & Metric

Tidying up (2 of 4)

```
```{r tidyUp}
mtc_tc_tidy0 <- mtc_tc_measures %>%
 gather(TaskMetric, value, -ID) %>%
 separate(TaskMetric, c("Task", "Metric"), sep = " ")
```

```

```
> mtc_tc_tidy0 %>% arrange(ID, Task, Metric)
```

```
# A tibble: 1,528,128 × 4
```

| | ID | Task | Metric | Value |
|--------------------------------|-------|--------|--------|-------|
| | <dbl> | <chr> | <chr> | <int> |
| 1 | 2 | 01.1.1 | Cycle | 1 |
| 2 | 2 | 01.1.1 | Time | 10 |
| 3 | 2 | 01.1.2 | Cycle | 2 |
| 4 | 2 | 01.1.2 | Time | 30 |
| 5 | 2 | 01.1.3 | Cycle | 3 |
| 6 | 2 | 01.1.3 | Time | 20 |
| 7 | 2 | 01.1.4 | Cycle | 4 |
| 8 | 2 | 01.1.4 | Time | 120 |
| 9 | 2 | 01.2.1 | Cycle | NA |
| 10 | 2 | 01.2.1 | Time | NA |
| # ... with 1,528,118 more rows | | | | |

Include “Tot Task Time”
which is just product:
Cycle * Time

Tidying up (3 of 4)

First make a new tibble `mtc_tc_tt` which is just the total task time for each Task for each ID:

```
91 # get Total Time = Cycle * Time
92 mtc_tc_tt <- mtc_tc_tidy0 %>%
93   group_by(ID, Task) %>%
94   summarise(value = prod(value)) %>%
95   mutate(Metric = "Tot Task Time") %>%
96   select(ID, Task, Metric, value)
```

```
> mtc_tc_tt
Source: local data frame [764,064 x 4]
Groups: ID [3,411]
```

Add, bind these rows to
`mtc_tc_tidy0`

| | ID | Task | Metric | value |
|---|-------|--------|---------------|-------|
| | <dbl> | <chr> | <chr> | <dbl> |
| 1 | 2 | 01.1.1 | Tot Task Time | 10 |
| 2 | 2 | 01.1.2 | Tot Task Time | 60 |
| 3 | 2 | 01.1.3 | Tot Task Time | 60 |
| 4 | 2 | 01.1.4 | Tot Task Time | 480 |

Tidying up (4 of 4)

Finally: 1) bind in Total Task Time rows; 2) Split out Stage & Process Group from Task; 3) Sort; & 4) Select columns for resulting data set.

```
97 mtc_tc_tidy <- mtc_tc_tidy0 %>%
98   bind_rows(mtc_tc_tt) %>%
99   mutate(Stage = as.integer(str_sub(Task, 1, 2)),
100         Process_Group = as.numeric(str_sub(Task, 1, 4))) %>%
101   arrange(ID, Stage, Process_Group, Task, Metric) %>%
102   select(ID, Stage, Process_Group, Task, Metric, Value)
```

```
> mtc_tc_tidy
```

```
# A tibble: 2,292,192 × 6
```

| | ID | Stage | Process_Group | Task | Metric | Value |
|---|-------|-------|---------------|------------|---------------|-------|
| | <dbl> | <int> | <dbl> | <chr> | <chr> | <dbl> |
| 1 | 2 | 1 | | 1.1 01.1.1 | Cycle | 1 |
| 2 | 2 | 1 | | 1.1 01.1.1 | Time | 10 |
| 3 | 2 | 1 | | 1.1 01.1.1 | Tot Task Time | 10 |
| 4 | 2 | 1 | | 1.1 01.1.2 | Cycle | 2 |
| 5 | 2 | 1 | | 1.1 01.1.2 | Time | 30 |
| 6 | 2 | 1 | | 1.1 01.1.2 | Tot Task Time | 60 |

Now that we are tidy...

It is trivial to do rollups like:

```
112 mtc_stage_rollup <- mtc_tc_tidy_dtls %>%
113   group_by(Stage, Metric) %>%
114   summarise(Num_Values = sum(!is.na(value)),
115             Avg_Value = mean(value, na.rm = TRUE),
116             Median_Value = median(value, na.rm = TRUE))
```

```
> mtc_stage_rollup
Source: local data frame [33 x 5]
Groups: Stage [?]
```

| | Stage | Metric | Num_Values | Avg_Value | Median_Value |
|---|-------|---------------|------------|-----------|--------------|
| | <int> | <chr> | <int> | <dbl> | <dbl> |
| 1 | 1 | Cycle | 34586 | 2.608512 | 1 |
| 2 | 1 | Time | 34586 | 39.514399 | 15 |
| 3 | 1 | Tot Task Time | 34586 | 80.960851 | 30 |
| 4 | 2 | Cycle | 40741 | 2.504185 | 1 |
| 5 | 2 | Time | 40741 | 32.304951 | 15 |
| 6 | 2 | Tot Task Time | 40741 | 64.518642 | 20 |

Much More to tidyverse!

- 522 pages in print edition of R for Data Science
- Including workflow suggestions (RStudio):
 - Projects, R Markdown, R Notebooks, Git/Github
- Visualization for exploring & communication
 - ggplot2,forcats, ...
- Data in RDMS'
 - RPostgreSQL, DB, using dplyr against Redshift, ...
- Modeling in the tidyverse
 - modelr & broom
- Friends of tidyverse
 - stringr, lubridate, & from other contributors like: tidytext, ...

What We Covered

- A quick introduction to R
- Tidyverse overview and some examples
- Tidying up a really messy Excel data set.
- Wrap up, questions, & learning more

*Questions? Comments?
Now is the time!*

Learning More

- Jim's [Learning R and RStudio](#)
 - With many links to learn more
- Three dplyr examples from Berkeley R Beginners Meetup
 - [US Bureau of Labor Statistics – Wide to Tidy](#)
 - [Sessionization of Web Events](#)
 - [Waiting for BART – A Simulation](#)
- All of Jim's prior talks www.ds4ci.org/archives
 - Mostly about or using R
- Contact: Jim@DS4CI.org